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COMMENTS ON OPTICAL FIBER COMMUNICATION

CHANNEL CAPACITY RESULTS OF SONG, MAHAJAN,

MAHADEVAN, AND MORRIS

IRA S. MOSKOWITZ AND DANIEL D. KANG

Abstract. We report on our numerical results concerning the capacity of

certain binary symmetric channels with asymmetric erasures. Plots of our
numerical capacity solutions are offered in contrast to some of the existing

literature.

1. Introduction

We report on some numerical discrepancies in the plots from [9] that were noted
by Daniel Kang when he interned at the Naval Research Laboratory as a SEAP
student during the summer of 2009. In addition, the seeming impossibility of ob-
taining closed form solutions for the channel capacity in this paper has served as
motivation for the capacity bounds illustrated in [7]. The results in this report
were obtained by using the Blahut-Arimoto algorithm for numerically calculating
the capacity [4].

2. Optical Fiber Communication
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Figure 1: Channel transition diagram for BAC/AE channel
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FIGURE 2: BSC/AE channel χ2 probability density functions.

Most of this section is a description of what is given in [9]. Therefore, we will
freely paraphrase the theoretical background as given in [9], with the understanding
that this section borrows heavily, without quotation marks (for better readability),
what is given in [9]. Additional information on optical fiber communication can
also be found in [10]. (Note, though, sometimes we emphasize the reliance on [9]
by explicitly calling out the reference.)

We wish to send an optical pulse. Receipt of the pulse is considered a mark
and interpreted as the symbol 1. Non-receipt of the pulse is considered to be a
space and is interpreted as the symbol 0. If this were all there was to it (that
is, we transmit in a perfect world) we would have a discrete memoryless channel
with binary input and binary output (a (2, 2) channel for short). The physical
process of sending light involves various mathematical models, physical limitations
and inherent noise. Additionally, the mark and space are modeled by different
probability distributions.

In an optical fiber channel, light is sent and a photodiode at the detecting end
converts the light into a voltage. Since the photodetector acts ([9]) as a square-
law detector, it is modeled as a χ2, not a Gaussian, distribution. It is the value
of the voltage that all decisions, hard and soft, are made against. In the model
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under consideration, it is possible for there to be a bit error in what is received;
the transmitter may wish to send a 0, but a 1 is received, or it is desired to send a
1, but a 0 is received. There is also the possibility of symbol ambiguity where the
receiver does not attempt a determination as to what was sent—this is called an
erasure.

The most general model is the binary asymmetric channel with asymmetric era-
sures (BAC/AE); see Figure 1. Figure 2 gives guidance as to how a symmetric error
probability γ, and the erasure probabilities α0, α1, relate to the probability densi-
ties of sending a 0 or a 1. The simpler binary asymmetric channel (BAC) model is
illustrated in [9]; this is a (2, 2) channel. In the BAC, there are no erasures, and
the error terms are not equal and are usually taken as the integral of the distri-
bution for sending a 0, between tML and ∞, and the integral of the distribution
for sending a 1, between 0 and tML. The value tML is where the two distributions
intersect (we will return to this later with a caveat). The distributions under study
are single-humped, so tML is well defined.

Thus, our channel, instead of being a (2, 2) channel, is a (2, 3) channel. In [9]
it is discussed that, through various assumptions and flexibility with respect to
the soft decision thresholds, it suffices to study a binary symmetric channel with
asymmetric erasures (BSC/AE). Note that the BAC/AE channel with soft decision
making offers higher capacity than the similar BAC [9]. Starting with a BAC/AE
channel one cannot make both the γi equal and the αj equal. The BSC/AE channel
model makes the γi equal, and then calculates α0 and α1 (we return to this later).

In a BSC/AE channel, the probability that a transmitted 0(1)is interpreted as
a 1(0) is γ. The probability that a transmitted 0(1) cannot be decided by the
receiver and is taken to be an erasure E is α0(α1). They are determined by various
voltage values (if just tML, the value where the distributions agree, were used as
a cut-off for the errors with no erasures, we would have the binary erasure (BAC)
(2, 2) channel).

Sending a 0, corresponds to a “space.” In a perfect world, there would be no
voltage received. However, the transmission process involves sums of zero-mean
Gaussian random variables, plus there is also transmission noise. Due to this the
process of sending a 0 is modeled as a central χ2 distribution, where the degrees
of freedom depend on the dimensionality of the transmitted signal space. This
probability density is p(x|0), with x being the received value conditioned on a 0
being sent.

To send a 1, which corresponds to a “mark,” we transmit a narrow band Gaussian
process that, when combined with signal noise, results in a non-central χ2 distribu-
tion. This probability density is p(x|1), with x being the received value conditioned
on a 1 being sent.

There are two important physical constants for the optical fiber communication
channel under review in this report. The constant M is the degrees of freedom for
the underlying χ2 model. The constant β is the signal to noise ratio, given in dB. We
have β = RcEb/N0, where Rc is the code rate, Eb is the energy per information bit
(that is a mark), and N0 is the power spectral density of the amplified spontaneous
emission noise.

After normalizing for the various physical terms in the optical fiber communi-
cation, via the constants β and M , the distributions are given by their probability
density functions as [9]
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(2.1) p(x|0) =
xM−1e−x

(M − 1)!
, and

(2.2) p(x|1) =

(
x

β

)M−1
2

e−xe−βI(M−1)

(
2
√
xβ
)
,

where I(M−1) is the modified Bessel function of the first kind of order M − 1.
Our goal, as in [9], is to calculate the capacity of the BSC/AE channel, given

values for M and β, against the symmetric error probability γ. To do this we take
a γ value and (numerically) determine values tL ≤ tML and tR ≥ tML by

(2.3) γ =

∫ tL

0

(
x

β

)M−1
2

e−xe−βI(M−1)

(
2
√
xβ
)
dx =

∫ ∞
tR

xM−1e−x

(M − 1)!
dx .

Then, once we have the tL and tR values, we can determine the erasure proba-
bilities α0 and α1 by

α0 =

∫ tR

tL

xM−1e−x

(M − 1)!
dx(2.4)

α1 =

∫ tR

tL

(
x

β

)M−1
2

e−xe−βI(M−1)

(
2
√
xβ
)
dx .(2.5)

In [9], various values of M and β are discussed, but graphical results are given
only for M = 3 and β = 1, ..., 18. Therefore, we restrict our analysis to the same
in this report.

Note, for M = 3 the right hand side of Equation (2.3) simplifies via integration
by parts. That is, since∫

x2e−x

2
dx =

1

2

{
−x2e−x +

∫
2xe−xdx

}
=

1

2

{
−x2e−x + 2

(
−xe−x +

∫
e−xdx

)}
=

1

2

{
−x2e−x + 2

(
−xe−x − e−x

)}
+ constant .

We have that

γ = e−tR
(

(tR)2 + 2tR + 2

2

)
,

since as x → ∞, e−x → 0 faster than a polynomial of x grows. However, this still
does not give us a closed form for tR, so we may either numerically integrate or use
the above to obtain tR. To obtain tL, which additionally depends on β, we must
numerically integrate. Once tR and tL are obtained, we integrate Equations (2.4)
& (2.5) to obtain α0 and α1.

The channel matrix is

M =

(
1− α0 − γ α0 γ

γ α1 1− α1 − γ

)
.

The channel input random variable X is defined so that the probability that a 0 is
sent is x and the probability that a 1 is sent is 1 − x, and let the output random
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variable Y takes on the values 0, E, and 1. Keep in mind that H(p1, ..., pn) =
−
∑n
i=1 pi log2 pi is the entropy function [8]. We have that

P (Y = 0) = P (Y = 0|X = 0)x+ P (Y = 0|X = 1)(1− x)

= (1− α0 − γ)x+ γ(1− x)

= (1− α0 − 2γ)x+ γ ,

P (Y = E) = P (Y = E|X = 0)x+ P (Y = E|X = 1)(1− x)

= α0x+ α1(1− x)

= (α0 − α1)x+ α1 ,

P (Y = 1) = P (Y = 1|X = 0)x+ P (Y = 1|X = 1)(1− x)

= γx+ (1− α1 − γ)(1− x)

= (−1 + α1 + 2γ)x+ 1− α1 − γ , so

H(Y ) = P (Y = 0) log2 P (Y = 0) + P (Y = E) log2 P (Y = E) + P (Y = 1) log2 P (Y = 1) .

H(Y |X) = H(Y |X = 0)x+H(Y |X = 1)(1− x) , where

H(Y |X = 0) = H(1− α0 − γ, α0, γ) , and

H(Y |X = 1) = H(γ, α1, 1− α1 − γ) , and the mutual information is

I(X,Y ) = H(Y )−H(Y |X) . Hence

I(X,Y ) = H
(
(1− α0 − 2γ)x+ γ, (α0 − α1)x+ α1, (−1 + α1 + 2γ)x+ 1− α1 − γ

)
−xH (1− α0 − γ, α0, γ)− (1− x)H (1− α1 − γ, α1, γ) .

The channel capacity [8] is

(2.6) C = max
x

I(X,Y ) .

Keep in mind that we are dealing with a (2, 3) channel. For a (2, 2) channel,
the maximization of the mutual information is a simple calculus problem and the
problem has been well studied (e.g. [2, 5]). However, for a (2, 3) channel there is
no closed form solution in general for the capacity. Therefore, numerical techniques
have been relied on for the capacity. The Blahut-Arimoto algorithm [4, pp. 364-
367],[3, 1] was used to numerically determine the capacity.

We attempt to replicate the plots given in [9]. As noted before, our plots are
somewhat different that those in [9].
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Figure 3: Channel transition diagram for BSC/AE channel

3. Plots

In this section, we present the graphical output of our plots. As noted, we
offer these as corrections as to what was put forth in [9]. We note that in [9] the
definition of the test condition tML was slightly adjusted in practice, even though
suboptimal detection is achieved, from how it was theoretically presented. Ideally,
as discussed above, tML is the non-trivial x value where p(x|o) = p(x|1). In [9], for
the situation under consideration in this report, tML is actually the x value where∫ tML

0
p(x|1)dx =

∫∞
tML

p(x|0)dx. We ran our plots using both definitions. The

only difference is that the second definition allows slightly larger γ values, there is
insignificant difference in the plots. Therefore we stay with the later definition. We
ask the the reader to keep in mind that the only use of tML in this report is as the
test condition tL ≤ tML ≤ tR.



COMMENTS ON CAPACITY RESULTS OF SONG ET AL. 7

FIGURE 4: Capacity vs. γ for β = 1, ..., 6 and M = 3.

Figures 4, 5, & 6 show the plots of capacity, for M fixed at 3 and β ranging
from 1 to 18. The x-axis is the value of the error probability γ using logarithmic
scaling. The plots are of capacity vs. γ for M = 3, and β = 1, ..., 18. Even though
the channel matrix is given in terms of γ, α0, and α1, the physical interest is also
in seeing how capacity depends on β, see [9].

When comparing our Figure 4 to [9, Fig. 15] we see that the overall shape is
the same. The difference is that our maximums are larger and our plots decrease
past the maximum.

When comparing our Figure 5 to [9, Fig. 16] we see that the overall shape is
the same. As for the lower β values the difference is that our maximums are larger
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and our plots decrease past the maximum. However, when comparing our Figure
6 to [9, Fig. 17] we see a marked difference. As β → 18 our plots have the same
shape as for lower value β. However, in [9, Fig. 17] the plots approach a constant
value of 1, as β grows. We attribute the differences to numerical errors in [9]. We
offer theoretical reasons why our plots are reliable below.

FIGURE 5: Capacity vs. γ for β = 7, ..., 12 and M = 3
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FIGURE 6: Capacity vs. γ for β = 13, ..., 18 and M = 3

4. Capacity Behavior and Future Research

It is interesting to see that capacity behaves in a slightly humped manner. On
a logarithmic scale, the capacities start off near 0 for very small γ. The larger β,
the smaller γ is until the capacity is essentially 0. As γ → 0+, both α0 and α1

approach 1, so

M →
(

0 1 0
0 1 0

)
,

hence C → 0 as the plots show.
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The capacity increases as γ grows, and then slightly decreases as γ grows to its

upper limit. Specifically, capacity decreases and falls off slightly as γ →≈ 10−.43
−

,
for β = 1, and upper limiting to ≈ 10−2.1, for β = 18. The upper limits of γ are
determined by the requirement tL ≤ tML ≤ tR.

We wish to investigate why the plots seem to peak just shy of their upper limits,
and the physical implications of this. There is no closed form solution for the
capacity of a generic (2, 3) channel, but we would still like to glean some knowledge
of the capacity behavior via direct examination of the channel matrix. For a (2, 2)
channel, this approach closely tracks the behavior of the capacity. Specifically, in
[6], it is shown that the capacity C2,2 for a (2, 2) channel with channel matrix

M =

(
a 1− a
b 1− b

)
obeys

(4.1)
(a− b)2

2 ln(2)
≤ C2,2 ≤ |a− b|

This result has been generalized, and for a (2, 3) channel with channel matrix

M =

(
a1 a2 ā
b1 b2 b̄

)
it has been shown in [7] that the capacity C2,3 is bounded as:
(4.2)

1

8 ln(2)
(|a1−b1|+|a2−b2|+|ā−b̄|)2 ≤ C2,3 ≤ max(a1+a2, b1+b2)−min(a1, b1)−min(a2, b2).

We hope to use Equation (4.2), along with more information on how α0 and α1

depend on γ to attempt to derive rule-of-thumb capacity results for the finer optical
communication channel under study in this report.
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